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ABSTRACT

A Critical Analysis of Objective Evaluation Metrics for Music Source Separation Quality

Erika Jianyue Rumbold

Despite our world becoming more and more noisy, humans have retained from ages

of evolution the ability to process multiple sounds occurring at once and focus on one

that is most important. The process of parsing audio scenes in this way is a combination

of multiple auditory tasks, and many researchers have taken it upon themselves to fully

understand the systems involved in these tasks and to engineer systems that can replicate

the process that is innate to ourselves. These studies fall into the category of computer

audition - the study of how machines can parse audio like humans do.

A major subject under the umbrella of computer audition is audio source separation,

or isolating sounds from a mixed audio scene. In order for audio source separation to

progress, it is essential for researchers to be able to evaluate their work throughout the

process; they would need a way to quantify how well the audio is isolated in order to make

improvements on their source separation system.

Human evaluation is the most direct way to determine whether humans think some

audio sounds good, but it is significantly expensive and time inefficient to collect enough
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data. In response to these shortcomings, several error calculation and deep learning

methods have been proposed and used in various computer audition tasks, including

source separation. The de facto standard metric for audio source separation is signal-to-

distortion ratio (SDR), which is frequently cited in audio source separation research and

serves as the baseline measure for many source separation challenges (e.g., Sony Demixing

Challenge [25]).

Despite its popularity, SDR has been proven to correlate poorly to human perception

[38, 1]. With the objective of making audio that sounds good to listeners, it is crucial

that these evaluation methods correlate well to human perception. This discrepancy has

been acknowledged in the speech domain, prompting the development of new evaluation

methods that achieve better correlation to human perception [7, 8, 10, 11, 12, 13, 21,

23, 24, 40]; but this progress has not yet been realized in the same capacity in the

music domain. In this work, I investigate existing evaluation methods for music

source separation to determine if any achieves a strong enough correlation to

human perception to be a reliable alternative to subjective human evaluation.

My approach is as follows. First, I conduct a subjective listening study to acquire Mean

Opinion Score data. I recruited study participants online to rate the quality of source

separated audio on a scale of 1-5. Then I made observations on this subjective evaluation

data, determining how well existing objective evaluation metrics correlated to the listener

opinion data. Finally, I make a comparison of music source separation systems by different

ranking criteria. The Papers With Code leaderboard for music source separation is ordered

by average SDR output. I use the collected evaluation data to determine whether it is

reliable to rank by SDR.
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are better. 58

3.6 Rankings according to Mean Opinion Score of Artifacts present.

Higher values are better. 59

3.7 Rankings according to Mean Opinion Score of Other Instruments

present. Higher values are better. 59



11

A.1 MUSDB18 songs used in subjective assessment experiments 72

A.2 Number of songs in each genre 73

A.3 Number of songs in each tempo category, by genre 74

A.4 Number of songs featuring male or female singers, by genre 75



12

List of Figures

1.1 A representation of the components of an audio mixture relevant to

music source separation 20

1.2 One audio example shown in two forms of representation for audio

data: (a) waveform and (b) spectrogram 21

1.3 Source Separation Wavenet model architecture from [20]. Left -

Residual layer. Right - Overview of the model. 24

1.4 Demucs model architecture from [6]. Left - full architecture. Right -

detailed representation of the encoder and decoder layers. 25

1.5 Hybrid Demucs architecture from [5]. The Z prefix is used for spectral

layers, and T prefix for the temporal ones. 26

2.1 A listening question on the MOS study 46

2.2 Distribution of variance between subjective ratings and the Mean

Opinion Score of each audio example 48

2.3 Distribution of Spearman rank correlation coefficients, measuring the

correlation between each participants’ responses and the MOS of each

audio example they rated 50



13

2.4 Distribution of variance between subjective ratings and the Mean

Opinion Score of each audio example, using only ratings from study

participants who gave a range of ratings greater than 1 51

2.5 Distribution of Spearman rank correlation coefficients, measuring the

correlation between each participants’ responses, which had a range

of ratings greater than 1, and the MOS of each audio example they

rated 51

3.1 Mean Opinion Scores vs. objective metric scores 54

3.2 Spearman’s rank correlation coefficients between Mean Opinion Score

and each objective metric score 55

3.3 Distribution of ratings for each source separation model 61



14

CHAPTER 1

Introduction

Despite our world becoming more and more noisy, humans have retained from ages of

evolution the ability to process multiple sounds occurring at once and focus on one that is

most important. To illustrate this phenomenon, imagine being in a crowded stadium. You

would likely hear chatter from other people – ones nearby talking normally to each other

and on the opposite side of the stadium as they shout down to the referees. You could

hear popcorn being popped and soda cans being opened. You could also hear a vendor

calling out their cotton candy and people tossing their trash in bins. You’re aware of all

of these sounds around you, but if you’re focused on the announcer over the loudspeaker,

you might not fully register everything. However, you’d still be able to react and change

focus if someone called your name.

The process of parsing audio scenes in this way is a combination of multiple auditory

tasks (e.g., timbre recognition, source localization), and many researchers have taken it

upon themselves to fully understand the systems involved in these tasks and to engineer

systems that can replicate the process that is innate to ourselves. These studies fall

into the category of computer audition - the study of how machines can parse audio like

humans do.

A major subject under the umbrella of computer audition is audio source separation,

or isolating sounds from a mixed audio scene. Recordings of audio scenes with multiple

overlapping sounds are often referred to as mixtures. Common applications of source
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separation include separating lead singing vocals from the rest of the musical mixture,

and isolating a primary speaker from a mixture of people talking.

In order for audio source separation research to progress, it is essential for researchers

to be able to evaluate their work throughout the process. Consider a research team that

is developing a system that isolates lead singing vocals from the rest of the mixture, for

example. A perfect system would output a new audio signal with only vocal sound, and a

second signal with everything else. However, an imperfect system would result in some of

the other instrument sounds appearing on the “vocals only” signal, also known as bleeding.

To mitigate as much bleeding as possible, the research team would need a way to quantify

how well the audio is isolated in order to make improvements on their system.

There are many methods of evaluating audio quality that have been implemented

in existing audio research. The two main forms of evaluation method are 1) human

evaluation, and 2) automated methods. The latter can be further distinguished as (a) a

closed-form formula that calculates an amount of error between the separator’s output

signal and the expected signal, and (b) a statistical model that estimates a “goodness”

score with information learned about either a data distribution [19] or human evaluation

data [30]. Each type of evaluation has its own benefits and detriments, which will be

discussed throughout this work. The main focus of this work is a comparison of existing

evaluation metrics for audio source separation quality.

1.1. Problem Statement

A common goal in audio research fields of study is to make something that sounds

good to human listeners. For example, we could give sound designers tools to make a film



16

sound better; or we could enhance the audio quality of President Franklin D. Roosevelt’s

“fireside chats”1 so they are more intelligible and are better suited to stand the test of

time.

Human evaluation is the most direct way to determine whether humans think some

audio sounds good, but it is significantly expensive and time inefficient to collect enough

data. In response to these shortcomings, several error calculation and deep learning

methods have been proposed and used in various computer audition tasks, including

source separation.

The de facto standard metric for audio source separation is signal-to-distortion

ratio (SDR), which I discuss further in Section 1.4.3. It is an error calculation that finds

the ratio of unwanted sound (i.e., distortion) that occurs in an audio signal to the entirety

of a target signal [37]. SDR is frequently cited in audio source separation research and

serves as the baseline measure for many source separation challenges (e.g., Sony Demixing

Challenge [25] and the MUSDB18 leaderboard on Papers With Code2).

Despite its popularity, SDR has been proven to correlate poorly to human perception

[1, 38]. In other words, an audio signal that a human listener would deem poor quality

may still get a good SDR value, or vice versa. With the objective of making audio

that sounds good to listeners, it is crucial that these evaluation methods correlate well

to human perception. This discrepancy has been acknowledged in the speech domain,

prompting the development of new evaluation methods that achieve better correlation to

human perception [7, 8, 10, 11, 12, 13, 21, 23, 24, 40]; but this progress has not yet

been realized in the same capacity in the music domain.

1A series of evening radio addresses given by Franklin D. Roosevelt between 1933 and 1944.
2https://paperswithcode.com/sota/music-source-separation-on-musdb18

https://paperswithcode.com/sota/music-source-separation-on-musdb18
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In this work, I investigate existing evaluation methods for music source

separation to determine if any achieves a strong enough correlation to human

perception to be a reliable alternative to subjective human evaluation.

1.2. Contributions

In this thesis, I critically analyze existing evaluation metrics for music source separa-

tion. The main contributions of this work include:

• A dataset of Mean Opinion Scores (MOS) for music tracks in the MUSDB18 music

source separation dataset that can be used by others to train new separation

models and separation quality evaluators3 (Chapter 2),

• Observations of how human opinions relate to each other. In other words, I

investigate whether one human’s perception correlates well to that of another,

and the general reliability of human opinion data (Chapter 2),

• A correlation analysis of existing music source separation evaluation metrics

against human opinion, including metrics that have not previously been eval-

uated for correlation to human opinion (Chapter 3),

• A comparison of music source separation algorithms when ranked by different cri-

teria. Specifically, I determine whether the rankings of these algorithms accord-

ing to their SDR output is the same when ranking according to human opinion

(Chapter 3).

3This MOS dataset can be found at https://erumbold.github.io/nu-thesis

https://erumbold.github.io/nu-thesis
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1.3. Broader Impact

Reliable audio source separation can open doors for many practical applications. It

would help a music producer, for example, edit an instrument that was recorded on the

same microphone as another instrument, or at a live concert with a cheering audience.

It could also be used by a film audio engineer to remove unwanted sounds (e.g., birds

chirping, refrigerator hum) from important dialogue.

Even within the research field of computer audition, there are subfields that would

benefit from higher performance of audio source separation. Music transcription is the

process by which a machine takes in musical audio data and transcribes it into a visual,

written form (e.g., piano roll, MIDI notation, traditional sheet music). An improved

method of isolating each instrument in a mixture would in turn improve the accuracy

of the notation as there would be less of other instruments bleeding into the isolated

instrument.

Audio source separation affects more than just the audio industry and audio research;

it can be implemented in things that everyday people use as well. For example, the

experience of wearing hearing aids could be significantly improved with audio source sep-

aration research. Existing hearing aids simply make all sounds around the wearer louder.

However, this can be extremely frustrating for the wearer because environmental sounds

(e.g. cars passing, dogs barking) are amplified the same amount as a person to whom

they want to pay attention, leading to hearing aid wearers tuning out of conversations

they cannot follow. This situation could be alleviated by having the hearing aids isolate

and increase the volume of only sounds that matter (e.g., a person speaking to you), and

lowering the volume of everything else.
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Another real-world device that would benefit from improved audio source separation

is automatic speech recognition. Voice assistant systems (e.g. Amazon Echo, Apple Siri)

listen for a command word (e.g. “Okay, Google”), parse your request, and execute the

request to the best of their ability. These systems, however, often get confused when

multiple people are talking at once. They could be improved by being able to identify

unique speakers and only listen to the one who spoke the command word.

In order for audio source separation to improve these real-world applications, evalua-

tion must occur during development and it must be consistent with the opinions of end

users (i.e., humans). A team researching hearing aid attention, for example, would need

to evaluate their work in progress and iterate until it is the best it can be before it can

be implemented in hearing aids for the general public. Even though the effects of reliable

evaluation are not directly felt by end users, it is a crucial aspect of the research and de-

velopment process for these previously mentioned applications of audio source separation.

1.4. Related Work

In this section, I present three important concepts that are relevant to this work -

music source separation, subjective evaluation of audio quality, and objective evaluation

of audio quality. For each, I give a general overview of the subject as well as prior work

related to these concepts.

1.4.1. Music Source Separation

Music source separation is the task of decomposing a musical mixture into its individual

components. For the MUSDB18 dataset [27] that I use in this work, these components
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Figure 1.1. A representation of the components of an audio mixture
relevant to music source separation

are defined as bass, drums, vocals, and other. These components are also referred to

as stems, or general groupings of similar instruments that appear a mix. For example, the

vocals stem would include any background vocals in addition to the lead singer. Given

a mixture of these four stems, the goal is to generate four audio files, or waveforms, that

correspond to each of the original stems.

Source separation typically is performed on one of two representations of audio data -

waveform and spectrogram. Audio waveform data, as shown in Figure 1.2a, presents the

audio’s amplitude, or loudness, as a function of time. A spectrogram, as shown in Figure

1.2b, is a type of time-frequency representation that shows the magnitude, or power, of

each frequency channel at each time interval.

Furthermore, there are two common source separation methods - building a mask on

a spectrogram and estimating waveforms for each stems [28]. Consider, for example, the

task of separating the vocals from the rest of the mixture. In a masking context, an
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(a) Waveform (b) Spectrogram

Figure 1.2. One audio example shown in two forms of representation for
audio data: (a) waveform and (b) spectrogram

array M is made in the same shape as the mixture audio data, usually represented as a

spectrogram. The values of M are 0 where vocals are not present, or 1 where vocals

are present in the mixture; this is known as a ideal binary mask. One could also make

an ideal ratio mask, which consists of values 0.0-1.0 corresponding to the power of the

vocals. The separated output is produced by multiplying the mixture by this mask M ,

resulting in frequencies other than vocal frequencies being reduced, or masked out.

Modeling methods of audio source separation employ neural networks to predict the

power spectrogram or waveform for each stem. Many network architectures have been

used before, including simple fully connected networks [36], convolutional networks [34],

and U-Net architectures [14]. Neural networks like these are able to take data as either

waveforms or spectrograms, although models operating in the waveform domain generally

do not perform as well as those in the spectrogram domain [6].

1.4.1.1. Source Separation Models Used in this Work. I used five different source

separation models to create separated stem data to be evaluated by listeners and by

objective methods of evaluation. These models were selected from the Papers With Code
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leaderboard for separation on the MUSDB18 dataset. The current rankings of these

separators is shown in Table 1.1. The application of these models in this work is further

described in Section 2.1.2.

Source Separation Models Rankings on MUSDB18

Rank Model SDR

1 Hybrid Demucs 7.68
3 Demucs-Extra 6.79
10 D3Net 6.01
11 Spleeter 5.91
18 Source Separation Wavenet 3.5

Table 1.1. Music source separation models used in this work, ranked by
their performance on the MUSDB18 dataset according to average SDR

over all stems, as shown on the Papers With Code leaderboard

The first type of model I will discuss is spectrogram-to-spectrogram models, meaning

they take input data in as spectrograms and output spectrograms for the separated stems.

Spleeter [14] is a collection of three music source separation models, each optimized to

separate mixtures into different types of stems. These models can be referred to as

2-stem (vocals and accompaniment), 4-stem (vocals, bass, drums, and other), and 5-

stem (vocals, bass, drums, piano, and other). To remain consistent with the rest of

this work, we will only consider the 4-stem model. The Spleeter models are U-nets

[18], or an encoder/decoder Convolutional Neural Network (CNN) architecture with skip

connections, with 6 layers each for the encoder and decoder. This network is tasked

with estimating a ratio mask for each stem. It’s trained with an Adam optimizer and

L1 normalization between the masked spectrograms of the input mixture and the target

spectrogram for each stem. Spleeter is the only music source separation model that I used

that was not trained on the MUSDB18 dataset.
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The second spectrogram-to-spectrogram model is D3Net [35], or the (D)ensely con-

nected multi(d)ilated (D)enseNet for music source separation. The base of D3Net is the

DenseNet [17], or densely connected convolutional networks. The DenseNet architecture

connects every other layer of a CNN in a feed-forward fashion. D3Net combines the

DenseNet with dilated convolution, which is a convolution where the filter is applied over

an area larger than its length by skipping input values with a certain step [26]. Dilated

convolutions allow the base network to cover a large receptive field with a small number

of layers; this is important because audio data can have long time and wide frequency de-

pendencies. The D3Net architecture is comprised of nested dilated dense blocks in order

to apply different dilation factors multiple times and ensure a sufficient depth is achieved

by the network.

There are fewer music source separation models that work in the waveform domain.

Regardless of the lack of availability, I have chosen two waveform-to-waveform separation

models for this work. The first model was developed by Llúıs, et al. [20] and was

adapted from the generative model for raw audio Wavenet [26] for the task of music

source separation. Throughout this thesis, I will refer to the network from Llúıs, et al.

[20] as “Source Separation Wavenet.” The architecture starts with a 3x1 CNN layer that

linearly projects the input waveform to k channels. This projection is then processed by

a series of dilated CNN layers. Two final, non-dilated CNN layers of size 3x1 adapt the

resulting feature map dimensions. The output layer linearly projects this feature map into

three channels, one for each of bass, drums, and vocals. The other stem is computed

by subtracting the three estimated stems from the original mixture. The architecture of

Source Separation Wavenet is shown in Figure 1.3.
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Figure 1.3. Source Separation Wavenet model architecture from [20]. Left
- Residual layer. Right - Overview of the model.

Demucs [6] is the next waveform-to-waveform separation model that I used. The

architecture was adapted from Conv-Tasnet [22], a model that was originally designed

for monophonic source separation of speech. In addition to the base model, Demucs is

inspired by models for music synthesis rather than masking. It is a U-net architecture with

a convolutional encoder and decoder based on wide transposed convolutions with large

strides. Demucs also includes bidirectional LSTM between the encoder and decoder.

In order to adapt the original Conv-Tasnet for stereophonic music source separation,

Défossez, et al. needed to increase the receptive field of the network. Conv-Tasnet had a

receptive field of 1.5 seconds of audio sampled at 8 kHz. For reference, music audio data

is commonly sampled at 44.1 kHz or 48 kHz. This increase in receptive field is achieved

by increasing the kernel size of the encoder and decoder, resulting in the same receptive

field at 44.1 kHz. While Conv-Tasnet was designed for short sentences of no more than a

few seconds, Demucs achieved its best performance when source separating input audio

that was 8 seconds long. The model architecture for Demucs is shown in Figure 1.4. In
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Figure 1.4. Demucs model architecture from [6]. Left - full architecture.
Right - detailed representation of the encoder and decoder layers.

this work, I use the Demucs-Extra model version, which has the same architecture but

was trained on MUSDB18 + additional data. I chose to use this version because of its

ranking on the MUSDB18 leaderboard.

The fifth and final music source separation model I used in this work is a hybrid, spec-

trogram and waveform model and is an improvement upon the Demucs model described

above. Referred to as Hybrid Demucs [5], this model is a dual U-net that is comprised of

a temporal branch, a spectral branch, and shared layers. The temporal branch takes in

waveform data and handles it like the Demucs-Extra model. The spectral branch takes in

spectrogram data and reduces the frequency dimension by applying the same convolutions

as in the temporal branch, but along the frequency dimension. The temporal and spectral

representations are then summed before being passed through a shared encoder/decoder

layer. The output of this shared decoder layer is passed as the input to the separate
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temporal and spectral decoders. The summation of these decoders’ outputs is the final

model prediction. The hybrid design allows the model to use whichever representation is

better for different parts of the signal, even within one source. The Hybrid Demucs model

architecture is shown in Figure 1.5.

Figure 1.5. Hybrid Demucs architecture from [5]. The Z prefix is used for
spectral layers, and T prefix for the temporal ones.



27

1.4.2. Subjective Evaluation of Audio Quality

Subjective evaluation of audio quality refers to the rating of audio stimuli by human

subjects. Participants of a subjective listening study may be asked to rate the audio

generally (i.e., ”How good does the audio sound?”), or they could be asked to evaluate

a specific attribute (e.g., level of interference, intelligibility, or musical intonation). In

addition to the types of questions that can be asked, there are several evaluation protocols

that are commonly used in audio research. These protocols are characterized by two main

attributes - 1) whether the participant is asked to rate an audio stimulus individually or

in comparison to other stimuli, and 2) whether the data is observed as a numerical rating

for each stimulus, or a count of how many times a stimulus was selected out of a group

of stimuli.

1.4.2.1. Subjective Assessment Protocols. One of most common subjective assess-

ment method in audio applications is Mean Opinion Score (MOS). Participants in

an MOS assessment are asked to rate stimuli on a rational number scale, usually one

as follows: 1-Bad, 2-Poor, 3-Fair, 4-Good, and 5-Excellent. At first glance, this rating

system seems straightforward. However, the quantization into of the five discrete values

imposes limits and a given participant may interpret the value ”Good” differently than

another [4]. Chen, et al. [4] also point out that the 1-5 point scale is assumed to be on

an interval scale, but it more realistically acts like an ordinal scale. People tend to have a

different cognitive distance between 1-Bad and 2-Poor than they do between 4-Good and

5-Excellent [39]. To validate this claim, it would be necessary to perform an experiment

that directly compares the accuracy of the MOS rating method to pairwise comparison,

whether crowdsourced or not. To my knowledge, this has not been done.



28

Pairwise comparison, or AB testing, asks participants to select one of two presented

audio stimuli that more accurately fits the evaluation criteria (e.g., sounds better, appears

to have less noise). This may also be modified to be an ABX test, which provides a

reference stimulus in addition to the two being compared. An ABX test typically asks

which of the two examples is most similar to the reference.

Pairwise comparison is easier to understand than the MOS 1-5 point scale because par-

ticipants aren’t required to mentally assign meaning to five different ratings [4]. Pairwise

comparison also allows for easy consistency validation through the transitive property. If

a participant that rates stimulus A better than B and B better than C, one could assume

that they would in turn rate A better than C [4, 2]. This makes it easier to eliminate

erroneous data from malicious or negligent selections since the transitive property is fairly

quick to assess.

There are many scenarios in which MOS, AB testing, or ABX testing are optimal.

However, due to the simplicity of these rating systems, these protocols are not ideal for

applications in which fine-grain, nuanced data are required. One protocol that is also

used in audio evaluation that achieves this level of detail is MUltiple Stimuli with Hidden

Reference and Anchor, or MUSHRA [32]. MUSHRA presents anywhere between 3 and

12 stimuli for participants to rate comparatively, including a reference that is unlabeled

and hidden among the other stimuli, as well as a hidden, unlabeled anchor stimulus that

is an intentionally bad sound. Participants are asked to rate each stimulus using a set

of sliders on a 1-100 point scale. It is expected that the reference be rated high and

the anchor be rated low. Standard MUSHRA is highly regulated, calling for a listening
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environment that meets certain criteria, specifying the training procedure, and requiring

participants to meet certain qualifications.

1.4.2.2. Crowdsourcing. Studies to acquire subjective data traditionally have been

conducted in a laboratory, in which researchers can ensure a controlled environment, such

as the required environmental features of standard MUSHRA. However, recent efforts

have been made to adapt subjective quality assessments to an online crowdsourced format

[4, 2, 29, 3].

In this work, I conducted an online, crowdsourced MOS study, details of which can be

found in Section 2.2. For the purposes of these experiments, it was best to collect rating

data that was scored on a numbered scale. Furthermore, it was not necessary to conduct

a MUSHRA assessment, which is more complex and intensive than MOS, since I was not

concerned with analyzing the minute differences in music audio quality, but rather more

general evaluations of quality.

Typically, lab-based audio tests require participants to complete assessments in rooms

that meet specific acoustic qualities, using the same technology as all other participants

(e.g. headsets, operating systems, etc.). Some protocols additionally restrict participants

to those that meet certain criteria such as level of expertise in an audio-related field or

not having been diagnosed with a hearing disorder [32]. These requirements eliminate

the possibility of a participant’s evaluation being affected by extraneous noise or a lack of

understanding of the task. On the downside, conducting tests in a lab costs a significant

amount of both time and money. Researchers must dedicate time to supervising trials

done by each participant, and each participant must be compensated for their time. The
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availability of time and money also limits how many assessments can be acquired. Fur-

thermore, subjective assessment trials that take place in a lab attract fewer participants,

leading to results that are less statistically significant [29].

These drawbacks led to the rise in subjective evaluations taking place online. Many ef-

forts have been made to adapt subjective assessment protocols to an online, crowdsourced

environment [29, 2, 4, 3], forgoing some of the strict participant eligibility criteria and

environmental control in favor of acquiring a larger and more diverse results set. Moving

these assessments online is also more cost effective; and it takes less time to acquire data

than it takes in a lab. Traditional MUSHRA trials, for example, can take several hours

for each participant to complete, depending on the number of trials completed. Online

evaluation tasks, on the other hand, are designed to be completed much more quickly.

Lab-based assessments typically have a small number of people evaluate a lot of things,

whereas online assessments are taken by many more people, but each usually completes

only a few tasks.

A shortcoming of online assessments is that they cannot be directly monitored, making

it possible for results to be affected by the listening environment, the equipment used,

or the participants’ integrity. These effects cannot be screened ahead of time, but there

are a few methods that can be implemented to filter online study results. For example,

the CrowdMOS platform for crowdsourcing MOS studies [29] asks participants for the

type of listening device they used during the study (e.g., headphones, laptop speakers).

It is expected that a person listening on speakers would not be able to hear finer details

of audio as acutely as listeners using headphones. Cartwright, et al. also asked about

listening device in their web-based MUSHRA assessment [3], as well as the quietness of
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the room in which the participant completed the study. Asking these questions allows the

researchers to eliminate data from participants that do not fit their criteria (e.g., using

headphones, being in a quiet environment). The online assessment could also contain a

hearing test to assess the participants’ hearing capabilities. For example, the MUSHRA

assessment from Cartwright, et al. features two hearing tests which require listeners to

report how many tones they hear in a sequence. This sequence always includes a tone

pitched at 55 Hz and at 10 kHz tone with up to 6 other tones being between those pitches.

It is expected that a listener completing the study in a noisy room or with an inadequate

listening device would not be able to hear the 55 Hz or 10 kHz tone. Researchers can

also hide anchor questions within the survey, as is already the practice in MUSHRA.

The answer should be obvious, so researchers can easily identify participants that did not

understand the directions or intentionally submitted inaccurate responses. If participants

do not answer these anchor questions correctly, their data can be eliminated.

Despite the need to prune crowdsourced results, crowdsourced assessments can achieve

comparable results to those of their lab-based equivalents while costing significantly less

and being quicker to execute [4]. More time may be necessary to screen crowdsourced

results, but this is usually done computationally and does not take a significant amount

of time from the researchers like in-lab assessments.

1.4.2.3. Choosing the Right Protocol. Each subjective assessment protocol has its

benefits and best use cases. For example, one could observe more minute differences

between stimuli with MUSHRA data; or if a researcher need only compare two stimuli,

they may opt for an AB assessment instead. A researcher could also use the same protocol

to answer different questions. For example, they could present an MOS assessment in
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which participants must answer ”How good did the audio example sound?” or they could

ask ”How clearly could you hear the vocals?” Each question could result in different

ratings, with the former question being much more broad and up to interpretation by the

participant.

1.4.3. Objective Evaluation of Audio Quality

Objective evaluation of audio is achieved without human subject data. Therefore, objec-

tive evaluation metrics are more practical for researchers to use, being significantly quicker

and cheaper to execute than a subjective evaluation study. There are many methods of

evaluation that can be applied to music source separation, and they typically take one of

two forms: 1) closed form equations that compute an amount of error, or 2) models that

predict an audio quality rating. Objective evaluation methods can also be classified by

whether or not they require a ground truth signal to which the source separation model’s

output can be compared; every closed form equation method requires a ground truth.

1.4.3.1. Closed Form Evaluation Methods. Signal-to-distortion ratio (SDR) [37] is

the current standard evaluation metric for music source separation. An estimate of source

ŝi is assumed to be composed of four separate components,

ŝi = starget + einterf + enoise + eartif

where ŝi is the true source, and einterf , enoise, and eartif are terms for interference, noise,

and artifacts, respectively [37]. From these attributes, we are able to compute four energy

ratios by the relation of these terms to the true source. Cano, et al. [1] represent the four

measures as follows: signal-to-artifacts ratio (SAR), or the amount of unwanted artifacts
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present in a source estimate in relation to the true source,

(1.1) SAR = 10log10

(
||starget + einterf + enoise||2

||eartif ||2

)

signal-to-interference ratio (SIR), or the amount of other source that can be heard in the

source estimate,

(1.2) SIR = 10log10

(
||starget||2

||einterf ||2

)

and SDR, or the overall measure of how good the source estimate sounds in comparison

to the true source.

(1.3) SDR = 10log10

(
||starget||2

||einterf + enoise + eartif ||2

)

These four evaluation measures together are known as the Blind Source Separation Eval-

uation Toolkit (BSSEval). Each of these measures is in decibels (dB), and higher values

are better. These equations also assign equal weights to the different error terms. So it

is assumed that each type of distortion contributes equally to the overall quality of the

source ŝi [1].

Since the original proposal of SDR, several issues with the metric have been discovered,

including an easy way to boost one’s scores by changing the amplitude scaling of source

estimates. This prompted Le Roux, et al. [31] to propose a version of SDR that is not

dependent on amplitude scaling, SI-SDR. They first rescale the target s by finding the

orthogonal projection of the estimate ŝ on the line spanned by s. The scaled reference

is denoted as etarget, which allows us to break down the estimate ŝi as ŝi = etarget + eres.
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From this, we can define SI-SDR by the equation

(1.4) SI-SDR = 10log10

(
||etarget||2

||eres||2

)

As with SDR, SI-SDR is measured in decibels (dB), and higher values are better. And

despite the potential improvements SI-SDR has over SDR, SDR remains the standard

evaluation metric for the task of music source separation.

Although SDR is the established standard, most loss functions that are normally

used in neural network training can also be used to evaluate the quality of audio source

separation. For example, L1 and L2 losses can be used to evaluate the similarity between

an estimated signal and the target signal. These loss functions have been previously

implemented in music source separation, being parts of the training architectures for

Demucs [6, 5] and Spleeter [14]. L1 can be observed as the absolute error, and L2 as the

squared error. Given a target signal s and an estimate signal ŝ, the two loss functions

can be expressed as the following:

(1.5) L1 = |s− ŝ| (1.6) L2 = (s− ŝ)2

In the context of music source separation, these calculations are typically done on the

power spectrograms of the target and estimate signals, and lower values are better.

1.4.3.2. Audio Quality Prediction Models. The second type of objective evaluation

is an audio quality predictor, or in other words, a non-human system (i.e., neural network)

that is trained using existing audio evaluation data to predict the evaluation of other audio
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stimuli. These evaluation methods can be further distinguished by the type of data on

which they are trained. The PEASS Toolkit4 [10] and MOSNet [21] are two evaluation

systems that are trained on human data - MUSHRA and MOS, respectively - to predict

quality scores for the input audio. Alternatively, audio quality predictors can be trained

on data that is another quality evaluation model’s output. For example, Quality-Net [11]

is a speech quality assessment model that is trained on PESQ[30] data and outputs a

PESQ score prediction for an audio input. PESQ, or Perceptual Evaluation of Speech

Quality, is a model developed for telephone networks and codecs that predicts Mean

Opinion Score.

A shortcoming of audio quality prediction models operating in the music domain that

is being addressed in the speech domain is the requirement of an available target signal,

or ground truth separated signal. The previously mentioned speech models, Quality-Net

and MOSNet, are two examples of evaluators that only take as training inputs estimated

signals and their PESQ or MOS scores, respectively. PEASS, however, requires the target

signal of each stem and the estimated mixture signal as inputs. This is a significant issue

when no target audio is available.

To my knowledge, a prediction model that acts like Quality-Net or MOSNet does

not exist for music source separation; that is, a model that only takes estimate signals

and their ratings as inputs. However, an alternative approach to a “referenceless” model

is given by Fréchet Audio Distance (FAD) [19]. Inspired by Fréchet Inception Distance

(FID) [16], which was developed to evaluate generative models for images, FAD compares

4PEASS can operate in both the music and speech domains.
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statistics computed on a set of estimate signals to reference statistics computed on a large

set of studio recorded music.

FAD uses the VGGish [15] model to generate embeddings for the reference set and

the evaluation set. Like how Fréchet Audio Distance is derived from Fréchet Inception

Distance, VGGish is derived from the VGG image recognition architecture. Multivariate

Gaussians are computed on both the evaluation set embeddings Ne(µe,Σe) and the refer-

ence embeddings Nr(µr,Σr); and Dowson, et al. [9] define the Fréchet distance between

two Gaussians as:

(1.7) F (Nb, Ne) = ||µb − µe||2 + tr(Σb + Σe − 2
√

ΣbΣe)

where tr is the trace of a matrix. As a distance measure, lower FAD scores are better.

FAD was developed for the task of music enhancement, but the metric could still be

effective at evaluating music source separation.

1.5. Limitations of Existing Work

With the general goal of producing audio that sounds good to human listeners, it’s

imperative that humans agree with the evaluations of these objective metrics. Subjec-

tive evaluation data will of course be similar to the opinions of human listeners because

the data comes directly from human listeners. However, it is highly expensive and time

inefficient to conduct a human listening study. Whether online or in a lab, assessment

participants must be compensated for their time. And although it is cheaper to conduct

studies online, the costs can quickly compound as more data becomes necessary. Regard-

ing the cost of time, lab-based experiments can take hours for one participant to complete;
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and for each hour of participant time, there are also hours taken away from the researcher

or other proctors to monitor the assessment.

These costs can be alleviated by a considerable amount when transferred to an online

setting, where a proctor is not required to dedicate time and participants can choose to

stop taking surveys at their own discretion, earning payment accordingly. However, this

may result in inconsistent data since online assessments tend to require more participants

than in-lab assessments, meaning consistency between participants’ answers becomes less

likely. Furthermore, assessment participants, whether in a lab or online, are not necessarily

obligated to complete an assessment with integrity; they could erroneously give random

ansewrs to complete the assessment more quickly. A researcher could discourage this

behavior by removing the incentive for participation (i.e., denying payment to those who

clearly gave unreliable answers), but they would still need to spend more time conducting

experiments in the lab, or publishing more assessments online.

An example of the costs associated with a subjective assessment study comes from

the online study I conducted, which is fully discussed in Section 2.2. It took five days and

$1,288.40 to acquire 4,500 responses. This is a significantly small dataset for a typical

computer audition experiment.

On the other hand, objective audio quality evaluation data are considerably easier to

acquire than subjective data; objective methods are more cost effective and require little

to no human participation. However, Cano, et al. [1], and Ward, et al. [38] each have

shown that existing objective evaluation metrics for music, such as SDR and PEASS, do

not correlate well to human perception. This poor correlation between objective and sub-

jective assessments indicates that objective evaluation methods for musical audio quality
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are not entirely effective at achieving the goal of matching what humans think sounds

good.

It’s important to note that neither Cano, et al. nor Ward, et al. uses the most widely-

used dataset for music source separation, MUSDB18 [27], in their studies. Because a

significant number of source separation systems are trained on MUSDB18, these studies

are not fully effective in showing the music source separation community how ineffective

evaluation metrics like SDR really are. Furthermore, the only metrics observed by these

studies were BSSEval, PEASS, and subjective listening assessments. I am not aware of

a correlation analysis or comparison of metrics that includes newer metrics (e.g., Fréchet

Audio Distance [19]).

Furthermore, the existing objective evaluation methods for music source separation

discussed above require a target signal for comparison. However, this is not always feasible

given the context. For example, source separation done on a band’s live concert recording

would not be able to be evaluated by metrics like PEASS or SDR because a clean recording

of each instrument, played in the exact same way as they were performed live, would not

exist. And although Fréchet Audio Distance does not have this issue, the correlation of

FAD to human opinion has not been observed in previous work.

1.6. Approach

My approach to a critical analysis of objective source separation evaluation metrics

has the following major steps:

(1) A subjective listening study to acquire Mean Opinion Score data for

the MUSDB18 dataset. Using five selected music source separation models,
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I source separated 30 songs from MUSDB18. I then recruited study participants

on Mechanical Turk (MTurk) to rate how good these stems sounded on a scale

of 1-5.

(2) An analysis of these MOS data. I investigate how well correlated are to each

other by comparing study participant responses to the responses of others.

(3) A correlation analysis of existing objective evaluation metrics to the

subjective MOS data. I determine how well each of the observed objective

metrics ratings correlates to the MOS ratings collected from the listening study.

(4) A comparison of music source separation systems by different ranking

criteria. The Papers With Code leaderboard for music source separation on

MUSDB18 is ordered by average SDR output. I observe whether the source

separation systems maintain the same order when ranked according to MOS

ratings. If it does not, it would indicate that SDR is not a reliable ranking criteria

for music source separation systems. Furthermore, if another metric ranks source

separators more similarly to MOS, it would raise the question of whether it is a

better ranking criteria for the leaderboard than SDR.
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CHAPTER 2

Conducting a subjective evaluation study

This chapter covers the steps taken to collect Mean Opinion Score data for MUSDB18

songs separated by five different source separation models. First, I discuss the MUSDB18

songs I selected to be evaluated, the separators I used, and the reasoning for these choices

2.1. I then present the procedure for the subjective listening assessment I conducted to

acquire these MOS data 2.2. Finally, I analyze the acquired data - discussing trends that

appear and how human listeners relate to each other 2.3.

2.1. Audio Data

It is important that data used in training an evaluation metric meet the following

criteria: 1) the data are suitable for the task, i.e., music source separation; and 2) there is

a sufficient amount of data to train on. In these experiments, I also take into consideration

the criteria that the data include examples from various genres of music and examples

that feature an even distribution of male and female vocals. These additional criteria

help ensure that the metric does not overfit to any given genre or voice type. In other

words, a metric trained on music in genres such as Rock, Pop, Electronic, Bluegrass,

Punk, Orchestral, etc. would be better suited to evaluate Ragtime music than one that

is only trained on Pop and Rock. The accuracy of the metric is also affected by the types

of voices on which it is trained. For example, a metric trained mostly on male singing
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voices may mistake higher frequencies heard in a recording of a female singer as noise,

rather than musical data, and thus inaccurately score the example as having low quality.

2.1.1. MUSDB18

In consideration of the above criteria, I have chosen to use a subset of MUSDB18 [27] -

a corpus for music separation. MUSDB18 consists of 150 stereo mixtures of songs, about

10 hours of data, that span a variety of genres. The song files are encoded at 44.1kHz

and in the Native Instruments stems format. This multitrack format is composed of five

stereo streams corresponding to the mixture, drums, bass, other, and vocals. In addition

to meeting the criteria defined above, MUSDB18 is among the top, most-cited datasets

for existing work in music source separation; it is also the sole dataset for many source

separation competitions like the Music Source Separation leaderboard on Papers with

Code1 and the Sony Music Demixing Challenge [25].

From the 150 songs in the MUSDB18 dataset, I curated a subset of 30 songs that

met the aforementioned criteria of 1) representing a wide range of musical genres and

2) striking a balance between male and female singers. Details about these tracks are

depicted in Appendix A. One may argue that it would be better to take a random selection

to mitigate bias. However, MUSDB18 skews in favor of male singers and the Pop/Rock

genre. As such, it would be likely that a random selection would take a similar form.

Manual curation makes it easier to represent the genres and vocals that are less common

in the MUSDB18 data set as a whole.

1https://paperswithcode.com/sota/music-source-separation-on-musdb18

https://paperswithcode.com/sota/music-source-separation-on-musdb18
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28 of the chosen 30 songs were selected from the testing set of MUSDB18. The source

separation algorithms I used in these experiments, described in Section 2.1.2, were all

trained on the MUSDB18 training set. So it would be expected that separation of songs

from the training set would be considerably better. Therefore, I have chosen to draw

the majority of the sounds used in this study from the MUSDB18 testing set, which is

not necessarily expected to be separated well. The two songs that I’ve included in the

experimental data were chosen to provide representation of a genre or voice part that

was lacking in the testing set. None of the songs in the testing set was Jazz, so I added

the Jazz song ”A Reason To Leave” by Patrick Talbot from the training set. Also, the

curated data set was lacking fast tempo songs sung by a female singer. To account for this,

I added the training set song ”One Minute Smile” by Actions, as well. These additions

are denoted in Table A.1.

2.1.2. Source Separation

Each of the 30 MUSDB18 songs was truncated to a 7 second segment. Audio clips that are

7 seconds long are short enough to be separated efficiently while also being long enough

for listeners to effectively evaluate.

These segments were auditioned to ensure that the clip contained enough of each

stem, bass, drums, and vocals, to be evaluated. The 30 songs were source separated

using Hybrid Demucs [5], Demucs-Extra [6], D3Net [35], Spleeter [14], and Wavenet

[20]. I chose these five separation algorithms due to their rankings on the Papers with

Code leaderboard2, seeking algorithms that represented the top, middle, and bottom

2Rankings listed are determined by the average SDR over all stems. SDR scores for each stem individually
are also provided on Papers with Code.
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tiers. At the time of writing, there were 19 separation algorithms on the leaderboard.

Hybrid Demucs and Demucs-Extra held 1st and 3rd places - representing the top tier of

algorithms. D3Net and Spleeter were mid-tier algorithms, placed at 10th and 11th; and

Wavenet was ranked 18th, thus being the bottom-tier algorithm. In addition to comparing

the correlations of existing metrics to human perception, we can determine the reliability

of an SDR-based leaderboard when considering human perception.

Each of these separators outputs tracks corresponding to the stems bass, drums,

other and vocals. I chose to disregard the other track in this experiment due to its

ambiguity. Other could contain a keyboard synthesizer or a harp - a solo saxophone

or an entire string orchestra. There are countless instruments and quantities of these

instruments that could be placed on the other track, so it would be extremely difficult

for a model to learn how to evaluate all of the different possibilities.

Ignoring the other track leaves us with 30 tracks separated by five source separating

systems into three stems, or a data set of 450 stems to evaluate.

2.2. Listening Assessment

I sought to collect Mean Opinion Score (MOS) data as the training targets for the

audio data described in Section 2.1. I conducted an MOS study in which participants

were asked to rate two separate attributes of the audio that was presented - the level

of other instruments present, and the level of artifacts present. To clarify the term

for participants without audio training, I define artifacts in the subjective assessment

study’s introduction as “extra sound that cannot be recognized as a musical instrument

or voice.”
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2.2.1. Participants

Participants in the subjective assessment study were recruited and paid through Amazon

Mechanical Turk (MTurk), a platform for crowdsourcing user studies. They were paid

$2.00 for each 10-question study they completed. Participants were required to be at

least 18 years of age, which is enforced by MTurk, and they were strongly encouraged to

complete the study with headphones or earbuds in a quiet environment.

2.2.2. Procedure

The subjective assessment started with a hearing screening similar to the screening defined

by Cartwright, et al. [3] in their online MUSHRA assessment. Participants were first

asked to adjust the volume of a 1000 Hz sine wave to a comfortable level and encouraged

to not change the level afterward. They then listened to two 8 second audio clips and

counted how many separate sine wave tones they heard. Each clip contained at least

a 55 Hz and a 10 kHz tone, with the possibility of up to six more tones between 55

Hz and 10 kHz. It is expected that a participant in a suitable listening environment

with an appropriate listening device should be able to hear the 55 Hz and 10kHz tones.

Participants had three attempts to answer both screening questions correctly. Incorrect

answers would be followed by a prompt for the participant to change their listening

environment or device and try again. Failing this check three times would prompt the

participant to submit their responses; they would not be able to view the rest of the study

and they would not be compensated.

Following the hearing screening, a description of the rating system was given to the

participants who passed the hearing test. It was explained that audio clips were to be
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rated on a 1-5 scale where 1 indicated Bad - a lot of sound from other instruments

or artifacts, and 5 indicated Excellent - no sound from other instruments or artifacts.

They were then presented with example audio clips and descriptions of what is meant by

presence of other instruments and presence of artifacts.

Each assessment consisted of 10 audio clips of the same stem type - bass, drums, or

vocals, and no audio clip was repeated across the published assessments. The assessments

were released in batches grouped by stem type; so one batch would only contain audio clips

of drums, for example. A participant could decide to complete each assessment in the

batch, or just a few. MTurk does not have the capability to randomize the order in which

assessments appear in a batch; so to ensure the latter assessments were taken enough

times, an assessment in the batch was made unavailable when it had been completed

by 10 participants. Assessments that were submitted with a failed hearing test were

republished until it had been completed by 10 participants who passed the hearing test.

The minimum number of participants necessary would be 10, if each participant com-

pleted all 15 assessments in all three stem-grouped batches; and the maximum number of

participants would be 450, if each participant completed only one of the 45 assessments.

It would have been possible to add more than 10 questions to each assessment, thus re-

quiring fewer individual participants. However, feedback I received before publishing the

study indicated that participants might feel fatigued after 10 questions, resulting in in-

consistent or inaccurate data. Therefore, I have decided to prioritize quality of responses

over the ease of having fewer participants.

For each of the 10 questions on an assessment, participants were asked to listen to a 7

second audio clip in its entirety, then separately rate the level of other instruments and
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artifacts present in the clip. An example of a question as it appeared on the assessment

is shown in Figure 2.1. At the end of the assessment, participants were asked to report

which listening device they used to complete the assessment and a rating on a 1-5 scale of

how quiet their listening environment was throughout the assessment, where 5 meant no

noise and 1 meant extremely noisy. They were provided spaces to report any changes to

their listening environment that may have occurred, as well as any additional comments.

One assessment took on average 26 minutes and 37 seconds to complete. This is longer

than I had expected since the test subjects who trialed the study before I published it

were able to complete an assessment in about 15 minutes. One explanation for the

longer assessment duration is that MTurk users often open multiple tasks at once; so the

listening assessment could have be open in the background while participants completed

other tasks, thus inflating the time it took to complete my assessment. There was also a

more extensive declaration of research intent, rights, and consent at the beginning of the

published study than in the trial versions. So participants of the published study may

have spent more time reading this text.

Figure 2.1. A listening question on the MOS study
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Over all three stem-grouped batches, I collected surveys from 403 unique participants,

91 of whom were rejected for failing the hearing test. The listening devices and environ-

ment noise levels of the participants who passed the hearing test can be found in Table

2.1 and Table 2.2, respectively.

Listening Devices

Headphones/Earbuds 420
Standalone Speakers 6
Built-In Speakers 24
Other 0

Table 2.1. Listening de-
vices used by participants
who passed the hearing
test

Environment Noise Levels

5 - No noise 209
4 - A little noise 117
3 - Somewhat noisy 77
2 - Very noisy 33
1 - Extremely noisy 14

Table 2.2. Noise level rat-
ing of the participants’ lis-
tening environments

2.3. Analysis of Subjective Data

It’s important to note that not all humans rate things the same way. In order to

illustrate the differences in individual participants’ ratings, I analyzed the data acquired

from the subjective listening assessment study described in Section 2.2.2 in comparison

to the Mean Opinion Scores of that data.

2.3.1. Variance in Study Participant Data

The first feature I observe is the variance in participant data. In other words, I look at how

far from an audio example’s Mean Opinion Score each participant rated the audio example.

For example, if audio example A had a Mean Opinion Score of 3.5, and participant P gave

it a score of 4, then the variance would be 0.5.
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(a) Artifacts (b) Other Instruments

Figure 2.2. Distribution of variance between subjective ratings and the
Mean Opinion Score of each audio example

Figure 2.2 shows the distribution of amounts of variance between an individual rating

of an audio example and the MOS of that audio example. The amount of variance is

shown on the horizontal axis, and the vertical lines show the mean and median amounts

of variance.

For both types of distortion - Artifacts and Other Instruments, most individual

rater scores varied, on average, by about 1.0 from the Mean Opinion Score. This amount of

variation seems logical since participants can only respond with integers within the small

range of 1 through 5; and it would be unlikely for a listener to rate an audio example as

a 5 when the majority rate it as a 1.

2.3.2. Correlation between Study Participant Responses

I suspected the correlation between participant responses and the MOS would be more

indicative of a non-uniform relationship between an individual’s hearing and that of the

population. I calculated the Spearman rank correlation coefficient between the 10 ratings
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of one subjective listening assessment submission and the Mean Opinion Scores of the 10

audio examples presented in that assessment. The Spearman rank correlation coefficient

is set in the range of -1 to 1, where 1 indicates perfect correlation, 0 means there is no

correlation, and -1 indicates perfect inverse correlation. For example, consider a set of 10

Mean Opinion Scores that steadily increases. A participant who gives ratings that also

increase from example 1 to example 10 would have a positive correlation coefficient close

to 1.0.

Figure 2.3 shows the distribution of these correlation coefficients, with the coefficients

on the horizontal axis and the portion of assessments on the vertical axis. Most assess-

ments achieved a correlation coefficient of around 0.5 to the Mean Opinion Scores of the

audio examples they rated. It also shows a significant number of assessments that were

negatively correlated to the others. I found that there were 78 out of 450 assessments

that had negatively correlated ratings; 25 occurred in assessments with bass clips, 28 in

drums assessments, and 25 in assessments of vocals.

2.3.3. Eliminating Unreliable Data

I considered excluding data that had a negative correlation to the MOS of those audio

examples. However, it is possible that these participants genuinely heard the audio dif-

ferently. Given the information acquired through the listening assessment, it would be

impossible to prove that these participants, or which of them, were not completing the

study with integrity. Instead, these results can be considered evidence that hearing is

subjective and not all humans hear the same way.
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(a) Artifacts (b) Other Instruments

Figure 2.3. Distribution of Spearman rank correlation coefficients,
measuring the correlation between each participants’ responses and the

MOS of each audio example they rated

In analyzing the subjective listening data, I also found many submissions from unique

participants that had either all 4s and 5s as their ratings, or all 1s and 2s. Because the

audio clips were created with source separation algorithms of varying quality, responses

like these are highly unlikely. I decided to make further observations on a subset of the

assessment response data that excluded assessments that had a rating of 0 or 1. For

example, anyone who rated their 10 audio examples with the same value or the same two

adjacent values was excluded.

I show the new distributions of rating variance and assessment correlation according

to this exclusion criterion in Figures 2.4 and 2.5, respectively. Surprisingly, this did not

significantly affect the distributions of variance or correlation. Given these observations,

I continue to use the full subjective evaluation dataset through the rest of this work.
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(a) Artifacts (b) Other Instruments

Figure 2.4. Distribution of variance between subjective ratings and the
Mean Opinion Score of each audio example, using only ratings from study

participants who gave a range of ratings greater than 1

(a) Artifacts (b) Other Instruments

Figure 2.5. Distribution of Spearman rank correlation coefficients,
measuring the correlation between each participants’ responses, which had
a range of ratings greater than 1, and the MOS of each audio example

they rated
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CHAPTER 3

Analysis of existing metrics

In this chapter, I do a comparative analysis between objective evaluation metrics for

music audio quality and human perception 3.1. I also observe how five music source

separation systems are ranked according to different evaluation metrics. 3.2.

3.1. Comparing Objective and Human Evaluation

I have chosen five existing metrics to examine: signal-to-distortion ratio (SDR) [37],

scale-invariant signal-to-distortion ratio (SI-SDR) [31], L1 loss, L2 loss, and Fréchet Audio

Distance (FAD) [19]. SDR is the current standard metric for music source separation.

These metrics are described in detail in Section 1.4.3. SDR serves as the baseline for these

experiments, being the current standard metric for music source separation. I chose to

observe SI-SDR to see if the scale-invariant aspect affects the outcome. L1 and L2 losses

are typically used in training prediction models, but not in the final evaluation of audio

quality. I chose to observe these loss functions to see if they would be valid evaluation

methods, seeing as they are already used as training evaluators. Finally, I chose to observe

FAD because it is the only evaluation metric for music that does not require the ground-

truth, target signal. If FAD is shown to be a reliable evaluation method, it would be

highly beneficial to the field of music source separation, specifically for experiments on

audio data for which the ground-truth signals are not available.
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The first method of analysis is to plot the Mean Opinion Score of each audio example

against the score of each objective metrics. In this context, an audio example is a stem

from one song that was separated by one of the five source separation systems described in

Section 2.1.2. Figure 3.1 shows these plots, where each data point represents one separated

stem. The horizontal axis shows the stem’s score according to the labeled objective metric,

and the vertical axis shows the stem’s Mean Opinion Score. Bass examples are shown in

blue, drums in green, and vocals in orange. The vertical axes on the SDR and SI-SDR

plots have been log-scaled because they are measured in decibels, a logarithmic unit, but

the other metrics are linear.

Perfect correlation between MOS and an objective metric would look like a diagonal

line. With this in consideration, it’s hard to claim there’s any strong correlation in any

of the plots in Figure 3.1, regardless of metric or stem type.

To confirm this notion, we can look at the Spearman’s rank correlation coefficients.

Spearman’s rank correlation coefficients are set on the range of [-1, 1]. A positive coef-

ficient indicates that the objective rating tends to increase as the MOS increases; and

a negative coefficient indicates that the objective rating tends to decrease as the MOS

increases. A coefficient of 0 indiates that there is no tendency for the objective rating to

increase or decrease as MOS increases. When the objective ratings and MOS are perfectly

monotone increasing, the coefficient is 1; and the coefficient is -1 when they are perfectly

monotone decreasing.

Figure 3.2 shows the correlation coefficients for each stem type - bass, drums, and

vocals. The horizontal axis denotes the objective metric and the vertical axis shows the

correlation coefficient. We can see that the strongest positive correlation occurred with
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(a) Artifacts

(b) Other Instruments

Figure 3.1. Mean Opinion Scores vs. objective metric scores
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(a) Artifacts (b) Other Instruments

Figure 3.2. Spearman’s rank correlation coefficients between
Mean Opinion Score and each objective metric score

L1 and L2 loss against the Mean Opinion Scores of artifacts present in bass examples.

With a correlation coefficient of 0.257, however, this is still not a significant relationship.

This implies that, as MOS increases, only a quarter of L1 and L2 evaluations do so as

well.
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3.2. Observations on Ranking by Different Evaluation Criteria

SDR is the most commonly used metric for training new music source separation

models. As such, there is a leaderboard for how well these models source separated music

from the MUSDB18 dataset, ranked by their overall SDR output. The first place, best

separation model is currently the Hybrid Demucs [5] model, and last place is held by

Wave-U-Net [33]. However, these rankings may not be the same when ranked by criteria

other than SDR.

3.2.1. Comparing Rankings to the MUSDB18 Leaderboard

In Tables 3.1 to 3.5, I show the five source separation models ranked by the five objective

evaluation metrics I observed. Higher values are better for SDR and SI-SDR, and lower

values are better for L1 loss, L2 loss, and Fréchet Audio Distance. In each table,

model names that are in bold indicate that they maintain the same relative

rank position as on the MUSDB18 leaderboard.

These tables show that no observed metric maintained the same exact rankings as the

MUSDB18 leaderboard; L2 loss was the most similar, with 3 models being ranked the

same. The lack of consistency is even present in measuring by average SDR, just as the

leaderboard is measured. This is most likely due to the dataset that was used in these

experiments. The MUSDB18 leaderboard displays the average SDR of a model’s output

based on the entire MUSDB18 test set of 50 songs, but I only used 30 songs. This raises

the question of how reliable it is to use an average as a ranking criterion. If its rank order

only holds true for the same exact dataset, how valuable would that information be for
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researchers who want to choose the best separator for their experiments using a different

dataset?

Models Ranked by Average SDR

Model Avg. SDR

1 Hybrid Demucs 10.962
2 Demucs-Extra 7.793
3 Spleeter 6.076
4 SS Wavenet -0.175
5 D3Net -1.067

Table 3.1. Rankings according to average
signal-to-distortion ratio. Higher values are better.

Models Ranked by Average SI-SDR

Model Avg. SI-SDR

1 Hybrid Demucs 10.854
2 Demucs-Extra 7.250
3 Spleeter 5.038
4 SS Wavenet -5.007
5 D3Net -11.151

Table 3.2. Rankings according to average scale-invariant
signal-to-distortion ratio. Higher values are better.

Models Ranked by Average L1 Loss

Model Avg. L1 Loss

1 D3Net 6,606,019.436
2 Hybrid Demucs 6,782,265.619
3 Demucs-Extra 7,839,315.456
4 Spleeter 11,038,175.683
5 SS Wavenet 14,260,813.344

Table 3.3. Rankings according to average L1 loss. Lower
values are better.
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Models Ranked by Average L2 Loss

Model Avg. L2 Loss

1 Hybrid Demucs 11,136.053
2 D3Net 11,442.753
3 Demucs-Extra 12,885.587
4 Spleeter 19,223.974
5 SS Wavenet 21,660.467

Table 3.4. Rankings according to average L2 loss. Lower
values are better.

Models Ranked by Average FAD

Model Avg. FAD

1 D3Net 8.291
2 Spleeter 9.950
3 Hybrid Demucs 10.098
4 Demucs-Extra 13.158
5 SS Wavenet 17.416

Table 3.5. Rankings according to average Fréchet Audio
Distance. Lower values are better.

3.2.2. Comparing Rankings to Rankings by Human Opinion

I return to the idea that a goal of music source separation is to create audio that sounds

good to human listeners. The observed evaluation metrics were not consistent with each

other nor the rankings of the official MUSDB18 source separation leaderboard. I now

explore whether any of these metrics is consistent with the ranking of source separation

models according to human evaluation.

In Tables 3.6 and 3.7, I show the rankings of the five source separation models accord-

ing to Mean Opinion Score. These are separated by presence of Artifacts and presence
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of Other Instruments since the study participants were asked to rate these attributes

separately for the audio examples they were given. For MOS, higher values are better.

Models Ranked by MOS - Artifacts

Model MOS
1 Source Separation Wavenet 3.389
2 D3Net 3.249
3 Spleeter 3.119
4 Hybrid Demucs 3.057
5 Demucs-Extra 3.015

Table 3.6. Rankings according to Mean Opinion Score of
Artifacts present. Higher values are better.

Models Ranked by MOS - Other Instruments

Model MOS
1 Source Separation Wavenet 3.196
2 Spleeter 3.152
3 D3Net 3.108
4 Hybrid Demucs 3.103
5 Demucs-Extra 3.087

Table 3.7. Rankings according to Mean Opinion Score of
Other Instruments present. Higher values are better.

We can see that the rank order according to MOS is completely different from the

rank order according to objective evaluation metrics. For example, the top two models

according to SDR and SI-SDR, Hybrid Demucs and Demucs-Extra, are shown at the

bottom of the MOS rankings. And the lowest performing model according to SDR and

SI-SDR, Source Separation Wavenet, is shown as the top performing model.

A key observation from these MOS rankings is that the range of Mean Opinion Scores

was quite small. Between the top and lowest ranking models, there was only a 0.374

difference in MOS for Artifacts and a 0.109 difference for Other Instruments. This
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may indicate that human listeners wouldn’t be necessarily good at discerning outputs of

one source separation model from another.

To further illustrate the responses of human listeners, I show the distribution of ratings

in Figure 3.3. The horizontal axis shows the score that a study participant could choose,

any integer in the range [1,5], and the vertical axis shows the portion of all ratings that

received that score. Across all of these plots, the distribution shape is extremely similar,

with most scores being 3s or 4s. This would align logically with Tables 3.6 and 3.7, which

shows every separator’s Mean Opinion Score being between 3.0 and 4.0.

These results may tell us that the outputs of these source separation models are more

similar than SDR and other metrics would indicate. I listened to the separated audio

from the five source separation models to verify this notion1. However, I do not agree

with this theory; for example, audio examples from Source Separation Wavenet had a lot

of artifacts and other instrument sound present, whereas Hybrid Demucs examples had

very little extra noise.

There are many factors that could contribute to the results differing from my own

perception. Despite providing examples of what to listen for, participants may not have

fully understood what they should be evaluating. Listeners could have also been affected

by the environment in which they completed the study. As shown in Table 2.2, 124

out of 450, or 27.55% of participants completed the study in an environment that was

“somewhat noisy” or worse. There is also the possibility that participants who reported

a good level of environmental noise could not have been genuine. In both the question

of environmental noise and the assessment itself, it is difficult to determine whether a

1Separated audio examples are available at https://erumbold.github.io/nu-thesis.

https://erumbold.github.io/nu-thesis
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(a) Artifacts

(b) Other Instruments

Figure 3.3. Distribution of ratings for each source separation model
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participant was authentic in their responses. It is also possible that listeners would be able

to hear the differences in audio quality more acutely if the audio examples were presented

in comparison with each other, instead of one at a time. This could be accomplished at

a later date with a MUSHRA study.
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CHAPTER 4

Conclusion

In this work, I have critically analyzed existing evaluation metrics for music source

separation. My approach to this analysis is as follows. First, I curated a subset of the

MUSDB18 dataset for music source separation that featured a wide range of musical

genres and representation of both male and female singing voices. I then source separated

these songs into the stems bass, drums, and vocals, using five source separation models

that appear on the MUSDB18 leaderboard, representing the top, middle, and low ranks.

I developed a subjective listening assessment to obtain Mean Opinion Score data for

the audio examples separated by the five source separation models. I recruited participants

on Amazon Mechanical Turk and collected 4,500 individual ratings. Using this data,

I observed how individuals listen in relation to each other. I found that, on average,

listeners agreed with each other’s rating opinions about 1/3 of the time, achieving an

average correlation coefficient of 0.33.

I then made observations of how existing objective evaluation metrics for music source

separation relate to the Mean Opinion Scores of human listeners. I found that the five

metrics I observed, including the standard metric for music source separation, were not

consistent with the opinions of human listeners. The best correlation coefficient between

an objective metric and human evaluation was 0.257, which does not indicate a strong

relationship.
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Finally, I compare the ranking of source separation models according to different

criteria - the average evaluation from the five objective metrics used in previous parts

of this work. Only SDR and SI-SDR shared the same rank order; every other observed

metric ranked the models in a different order from the rest. I also examined the ranking of

source separation models according to the subjective Mean Opinion Scores, which differed

even further from the objective metric-based ranks.

Determining whether an objective evaluation metric exists that is similar to human

opinion was the central goal of this work. From observing the correlation of objective

evaluation scores to subjective ratings, and comparing the ranking of separators by these

different scores, I found that no existing objective evaluation metric correlates to the

opinion of human listeners. On the MUSDB18 leaderboard, there was a 4.1 dB difference

in SDR, and a 17-place difference in ranking, between the best and worst ranked separators

that I used in this work. So it was expected that there would also be a significant difference

in the ratings from human listeners. However, human listeners evaluated all five separators

very similarly, with the MOS of the best and worst separators being no more than 0.374

points apart, and most of the audio examples, regardless of separator, being rated a 3 or

4 out of 5 for audio quality.

Furthermore, I found that the average SDR for each separator differed depending on

the data used. The leaderboard is ranked according to the models’ average SDR output

for the full 50-song test set of MUSDB18. But the average SDR values for these separators

were different when evaluated on only 30 songs. This would indicate that the MUSDB18

leaderboard is not a valid representation of separator quality for experiments using a

subset of MUSDB18 or an entirely different dataset. In other words, the MUSDB18
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leaderboard could be a reliable source to help choose a separator, but only when using

the full MUSDB18 data set. This also suggests that ranking separators by an average

score, whether average SDR or another metric’s average, is not useful for every music

source separation experiment. Instead, an evaluation of the separator as a whole, and

how it performs on multiple datasets would be more representative of separation quality.

4.1. Limitations

As is expected with conducting a subjective listening assessment, the availability of

time and money was a significant limitation of this work. The subjective listening study

cost more than $1,000 and I only acquired 4,500 data points. This is a significantly small

dataset for a computer audition experiment. Furthermore, it took five days to acquire

those 4,500 data points, during which I had to verify each submission and republish

assessment forms that were completed by workers who did not meet certain eligibility

criteria. It could have taken even longer if more and more people failed to meet these

requirements.

MUSDB18 is the most widely used dataset for music source separation. However, it

is not the perfect, most ideal dataset for the task. The perfect dataset would equally

feature a wide variety of genres, tempi, and instrumentations. The songs of MUSDB18

are categorized into 11 genres, with 72 out of 151 songs being listed as “Pop/Rock.”

Furthermore, the genre labels are not consistent with each other. For example, “Reggae”

is one of the listed genres, but the song “Reggae” by Music Delta is listed as Rock. In

my experiments, I chose to use only a subset of MUSDB18 that consisted of 30 songs
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specifically chosen to even out the distribution of genres, tempi, and singing voice types.

However, I recognize that such a small dataset is not able to wholly represent all music.

Finally, the choice to conduct a Mean Opinion Score assessment made some aspects

of the process easier, but created significant discrepancies in the data. One reason I chose

to conduct an MOS study was the simplicity of the rating system. I assumed this would

make it easier for participants understand the task. However, the results shown in Section

3.2.2 may indicate that their understanding was less than expected.

4.2. Future Work

There is a lot of future work that can be done based on the data and observations

shown throughout this thesis. First, the issues that may have been due to the format

of the Mean Opinion Score assessment could be alleviated by conducting a MUSHRA

assessment instead. In MUSHRA, audio examples are presented at once so the participant

can listen to them in comparison to each other. This could help participants understand

what types of distortion they should be listening for when they can quickly and easily

listen to multiple examples.

In this work, I also show that the most commonly used evaluation metric for music

source separation does not achieve a strong correlation to the opinions of human listeners,

and no other metric does either. One could use these insights to develop a new evaluation

metric with the intent of correlating well to human perception. While possible, a robust

dataset of audio as well as human evaluation data would be required to achieve this goal.
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APPENDIX A

MUSDB18 Data

This appendix includes a table of data used in my subjective assessments experiments

from the MUSDB18 dataset [27]. I curated 30 songs, 28 from the testing set and 2 from

the training set, that cover a range of musical genres and tempi. Because male singers are

more represented in the overall MUSDB18 dataset, I ensured the curated set included a

significant number of female singers. The 30 songs are shown in Table A.1.

A.1. Designation of Genres

MUSDB18 provides genre labels for each song. However, some songs are labeled

inconsistently (e.g. two songs that sound very similar are given different labels) or can be

labeled more specifically (e.g. a song labeled Pop Rock can be labeled as Electronic,

Pop, or Pop Punk, which are related genres or subgenres of Pop Rock). To denote

these discrepancies, Table A.1 indicates both the label assigned by MUSDB18 and the

label considered in this work. Table A.2 shows the number of songs that belong to each

genre as defined by the MUSDB18 labels and the new labels.
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Artist Song Title Genre - MUSDB18 Genre - New Tempo Vocals

Actions One Minute Smile* Pop Rock Pop Punk Fast Female

Al James Schoolboy Facination Pop Rock Pop Slow Male

Angels In Amplifiers I’m Alright Rock Singer-Songwriter Medium Male

Arise Run Run Run Reggae Reggae Medium Male

Ben Carrigan We’ll Talk About It All Tonight Pop Rock Singer-Songwriter Medium Male

BKS Too Much Pop Rock Rock Medium Male

Buitraker Revo X Pop Rock Rock Medium Male

Carlos Gonzalez A Place For Us Pop Rock Pop Rock Slow Male

Enda Reilly Cur An Long Ag Seol Pop Rock Singer-Songwriter Slow Male

Forkupines Semantics Pop Rock Pop Punk Fast Male

Hollow Ground Ill Fate Heavy Metal Heavy Metal Medium Male

Juliet’s Rescue Heartbeats Pop Rock Pop Rock Fast Female

Little Chicago’s Finest My Own Rap Rap Medium Male

Louis Cressy Band Good Time Rock Funk Slow Male

Lyndsey Ollard Catching Up Pop Rock Singer-Songwriter Slow Female

Motor Tapes Shore Pop Rock Pop Rock Slow Male

Nerve 9 Pray For The Rain Pop Rock Pop Rock Slow Female

Patrick Talbot A Reason To Leave* Jazz Jazz Slow Male

Raft Monk Tiring Pop Rock Grunge Slow Male

Sambasevan Shanmugam Kaathaadi Pop Rock Bollywood Slow Female

Secretariat Over The Top Pop Rock Rock Fast Male

Side Effects Project Sing With Me Rap Rap Medium Male

The Doppler Shift Atrophy Pop Rock Rock Fast Male

The Easton Ellises Falcon 69 Pop Rock Electronic Medium Male

The Long Wait Dark Horses Pop Rock Country Slow Female

The Sunshine Garcia Band For I Am The Moon Reggae Reggae Slow Female

Timboz Pony Heavy Metal Heavy Metal Fast Male

Triviul feat. The Fiend Widow Pop Rock Hip Hop Medium Female

We Fell From The Sky Not You Heavy Metal Heavy Metal Fast Male

Zeno Signs Pop Rock Pop Rock Medium Female

* denotes a song is from the training set of MUSDB18

Table A.1. MUSDB18 songs used in subjective assessment experiments

A.2. Distribution of Tempo

Song tempi are categorized as Slow, Medium, or Fast. I define these tempo labels

by ranges of beats per minute (bpm) as follows:
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Genre Count (MUSDB18 Labels) Count (New Labels)

Bollywood 0 1
Country 0 1
Electronic 0 1

Funk 0 1
Grunge 0 1

Heavy Metal 3 3
Hip Hop 0 1
Jazz 1 1
Pop 0 1

Pop Punk 0 2
Pop Rock 20 5

Rap 2 2
Reggae 2 2
Rock 2 4

Singer-Songwriter 0 4

Table A.2. Number of songs in each genre

• Slow: 85 bpm or lower

• Medium: 86 bpm to 125 bpm

• Fast: 126 bpm or higher

Table A.3 displays the number of songs in each tempo category, separated by genre.

A.3. Male vs. Female Vocals

Male singers are dominant in the MUSDB18 dataset. In order to mitigate bias due to

singing range, I made sure to select songs that achieved a more balanced ratio of male to

female singers while maintaining representation of a wide variety of genres. This resulted

in 30% of the selected songs featured female singing voices. Of the full MUSDB18 dataset,

28% of the songs feature female singers. Although an increase of 2% is marginal, there

are a couple factors that lead to why the representation of female singers in the chosen
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Genre Count (MuOSNet Labels) Slow Medium Fast

Bollywood 1 1 0 0
Country 1 1 0 0
Electronic 1 0 1 0

Funk 1 1 0 0
Grunge 1 1 0 0

Heavy Metal 3 0 1 2
Hip Hop 1 0 1 0
Jazz 1 1 0 0
Pop 1 1 0 0

Pop Punk 2 1 0 1
Pop Rock 5 3 1 1

Rap 2 0 2 0
Reggae 2 1 1 0
Rock 4 0 2 2

Singer-Songwriter 4 2 2 0

Total 30 13 11 6

Table A.3. Number of songs in each tempo category, by genre

subset was not greater; 1) I prioritized representation of genre higher than that of gender,

and 2) I sought to keep the subset to just MUSDB18’s test set as much as possible, but

it would require most of the training set songs featuring female singers to create an even

ratio of male to female singers.

The separation of voice types in each genre is illustrated in Table A.4.
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Genre Count (New Labels) Male Female

Bollywood 1 0 1
Country 1 0 1
Electronic 1 1 0

Funk 1 1 0
Grunge 1 1 0

Heavy Metal 3 3 0
Hip Hop 1 0 1
Jazz 1 1 0
Pop 1 1 0

Pop Punk 2 1 1
Pop Rock 5 2 3

Rap 2 2 0
Reggae 2 1 1
Rock 4 4 0

Singer-Songwriter 4 3 1

Total 30 21 9

Table A.4. Number of songs featuring male or female singers, by genre
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