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Topic 6

The Digital Fourier Transform
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Why bother? 
¥ The ear processes sound by decomposing it into sine 

waves at different frequencies. 
¥ An algorithm that does the same would be a step towards 

machines that hears things as humans do. 
¥ SoÉhow do we do this by machine?
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Jean Baptiste Joseph Fourier

He was a French mathematician and physicist who 
lived from 1768-1830. 

He presented a paper in 1807 to the Institut de 
France claiming any continuous signal with finite 
period could be represented as the sum of an 
infinite series of properly chosen sinusoidal wave 
functions at different frequencies. 

We now call this the Fourier Series. 

Could this be the way to decompose sounds into 
different frequencies, like the ear does?
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Factoid

Among the reviewers of FourierÕs paper were two 
famous mathematicians 

Ð Joseph Louis Lagrange (1736-1813) 
Ð Pierre Simon de Laplace (1749-1827) 

Lagrange said sine waves could not perfectly 
represent signals with discontinuous slopes, like 
square waves. (He was, technically, right) 

Thus, the Institut de France did not publish 
FourierÕs work until 15 years later, after Lagrange 
died.
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The Fourier Series
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Aside: Two defs for ÒfrequencyÓ

¥ The frequency of a periodic function can be 
defined in two ways.
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Fourier Series
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PROBLEM 1 

The Fourier Series has an infinite number of 
sinusoids in it. 

It isnÕt practical to calculate an infinite 
number of things, in the general case. 

We need to frame the problem as a finite 
one, so we can actually solve the general 
case. 
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PROBLEM 2 

A function representable by a Fourier series 
is perfectly periodic. Therefore, it goes on 
infinitely. 

Real world audio is not infinite in lengthÉand 
things are only locally periodic. 
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Solution: Sample, Window, Hope

STEP 1: Take a ÒsnapshotÓ of the signal by 
sampling it a finite number of times within a 
brief time window 

STEP 2: Pretend what you saw in that window 
goes on forever 

Voila! Now you have a ÒperiodicÓ signal 
represented by a finite number of points.
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Image from The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 

Discrete Fourier Transform
¥ Represents a finite  sequence of complex values as a 

finite  number of discrete sinusoidal functions. 
¥ This finite sequence of samples can be perfectly 

reproduced by the finite set of sinusoids.
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Digital Sampling
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An analog signal is sampled into sequence of  
discrete sample points,  x[n]
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Windowing

 x[n]  is windowed by function w[n]   

 (multiply the ith value of x by the ith value of w)

x[n] w[n] z[n]

x =

Example: windowing x[n] with a rectangular window
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Only whatÕs in the window

z[n]

Do the DFT only on the values in the window

x[n] w[n]

x =

Ignore Ignore
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Windowing can lead to problems

The original signal The sample window

What the Fourier Transform ÒimaginesÓ the signal looks like,  
based on what  was in the window 
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Window size

¥ Your window should be longer than the 
period of the function you want to analyze 

¥ At a sample rate of 8000 Hz, what is the 
minimum window size that can capture the 
lowest sound you can hear?
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Window shape

¥ Making the window ÒsmallÓ at the edges 
reduces weirdness.

BETTER FOR GETT 
ING A GOOD IDEA 

BAD FOR GETTING  
A GOOD IDEA OF 
WHATÕS GOING ON
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Why window shape matters

¥ DonÕt forget that a DFT assumes the signal 
in the window is periodic 

¥ The boundary conditions mess things upÉ
unless you manage to have a window 
whose length  is an exact integer multiple 
of the period of your signal 

¥ Making the edges of the window less 
prominent helps suppress undesirable 
artifacts
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Some famous windows
¥ Rectangular 

¥ Hann  (Julius von Hann) 

¥ Bartlett
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The DFT and IDFT formulae
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Some points

¥ If you have n samples in your window, you 
will get n frequencies of analysis from your 
FFT.  

¥ If the samples were grabbed at regular 
times, then the analysis frequencies will be 
spaced regularly in the frequency domain.
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Fundamental Freq of a Signal

¥ This is NOT the DC offset. 
¥ This is NOT fundamental frequency of analysis of 

an FFT  
¥ The lowest frequency a sine or cosine can have 

and still fit into one period of the signal function. 
¥ Often called ÒF zeroÓ and written F0

0 0 / 2 1/f T! "= =
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Fundamental Frequency of Analysis

¥ The lowest frequency component a Fourier 
transform can analyze meaningfully 

¥ All the frequencies of analysis are integer 
multiples of the fundamental frequency of 
analysis  

¥ This is also the spacing between frequencies of 
analysis.

fanalysis =
S
N

Number of 
samples in my 
window

Sample rate
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About Frequencies of Analysis 

¥ A recording with N points produces a DFT 
with N points.   

¥ The energy in the DFT is symmetric 
around two Òpivot pointsÓ: the DC offset 
(the 0 frequency) and " the sample 
frequency (S). 

¥ LetÕs look at an example. 
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The numbers in an 8 point FFT

-3 -i -1-i 0 1+i 2 1-i 0 -1+i

-0.13 -0.98 0.38 -0.27 -0.13 -0.27 -0.63 -0.98

0 1 2 3 4 5 6 7Array Index

8 point signal

FFT of signal

DC offset Nyquist 
frequency

Complex  
conjugates

Better index 0 1 2 3 4 (-4) -3 -2 -1

Frequency 
of FFT 0 S/N 2S/N 3S/N 4S/N -3S/N -2S/N -S/N

0 125Hz 250Hz 375Hz 500Hz -375Hz -250Hz -125HzIf S=1000 Hz 
and N = 8
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Another view of the same data

Complex  
conjugates

Nyquist 
frequency !26
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Complex Numbers

 A
y

( )2 2

cos

sin

x A

y A

A x y

!

!

=

=

= +

( ) cos sin   

z x iy

A i! !

" +

" +

x

im
ag

in
ar

y

real

!

!27



Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

EulerÕs Formula

¥ Useful for relating polar coordinates to 
rectangular coordinates 

cos sin

Thus...
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Multiplying Complex Numbers

¥ POLAR notation EASIER for this
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Multiplying Complex Numbers

¥ Cartesian works as followsÉ

( )
1 1 1 2 2 2

3 1 2 1 2 1 2 2 1

      z x iy z x iy

z x x y y i x y x y

= + = +

= ! + +
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Complex Conjugate

¥ the complex conjugate  of a complex number 
is given by changing the sign of the imaginary 
part. 

z a ib

z a ib

= +

= !

A complex number

Its complex conjugate
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DFT in Cartesian Coordinates
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I got this using EulerÕs formula. 

In Cartesian coordinates, the fact that these are complex 
values is more obvious.
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The  Inverse DFT
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Computational complexity

¥ How many operations does this take 
for each frequency? 

¥ How many operations total?
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The FFT

¥ Fast Fourier Transform 
ÐA much, much faster way to do the DFT 
ÐIntroduced by Carl F. Gauss in 1805 (ish) 
ÐRediscovered by  Cooley & Tukey in 1965 
ÐBig O notation for this is O(N log N) 
ÐMatlab functions fft  and ifft  are standard 
ÐREQUIRES the window size be a power of 2
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Steps when making a spectrogram

¥ Cut up a signal into (possibly overlapping) windows 
¥ Apply a windowing function (see slide 14), if you want to 

remove those edge effects 
¥ Take the FFT of each window 
¥ if X is the FFT, do np.abs(X) to get the magnitude of the signal 
¥ For display, take the log of the values (deciBels would be a 

good way) 
¥ Only display frequencies up to 1/2 the sample rate 
¥ Plot it, where vertical = freq (low frequecy = lower on the 

graph), horizontal = time step (left is earlier, right is later) and 
color = how loud
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Short time Fourier Transform

¥Break signal into windows 
¥Apply windowing function 
¥Calculate fft of each window
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Reconstructing the waveform

!38

To invert the STFT to reconstruct the original wave form do 
thisÉ 
  
For each complex spectrum in your STFT  

Do the inverse Fourier transform  
Align the resulting signal where it was originally 

Now, element-wise add the values in the time-aligned windows. 

Note: if you use a Hann window and the hop size is 1/2 the 
window size, youÕll end up with a perfect reconstruction in the 
overlapped portions. Think about why that is 
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The Spectrogram
spectrogram(y,256,128,256,fs,'yaxis');

¥A series of short term DFTs 
¥Typically just displays the magnitudes in X 
  of the frequencies up to " sampe rate 
¥There is a spectrogram  function in matlab!39

///ppt/slides/spectrogram(y,256,128,256,fs,'yaxis');
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The Spectrogram

¥A series of short term DFTs 
¥Typically just displays the magnitudes in X 
  of the frequencies up to " sampe rate 
¥There is a spectrogram  function in matlab

spectrogram(y,1024,512,1024,fs,'yaxis');

!40

///ppt/slides/spectrogram(y,256,128,256,fs,'yaxis');

