Sound object labeling

EECS 352 Machine perception of Music and Audio
Bongjun Kim
Winter, 2019
Sound object labeling

Dog barking
Goal

• Building a system that automatically labels an audio event

An array of real values

Dog barking
Tasks

• Audio classification

![Audio classification diagram]

• Sound Event Detection (SED)

![Sound Event Detection (SED) diagram]
MACHINE LEARNING: CLASSIFICATION
Supervised learning from data

Function we want to learn (Target function)

\[Y = f(X) \]

Find a hypothesis function \(h \) such that \(h(X) \approx f(X) \)

- On the training data \(D = \{ <x_1, y_1>, ..., <x_n, y_n> \} \)
Supervised Learning

• Regression
 – A target function maps X onto continuous real values Y.

• Classification
 – A target function maps X onto discrete class labels Y.
Overview of general classification tasks

Input data → Feature representation → Classifier → Label

A vector of numbers
\(\tilde{x} = <a_1, a_2, ..., a_n> \)

...that represent attributes of the example, like fundamental frequency, or amplitude.

- Decision Tree
- Nearest Neighbor
- Neural Networks

“Cat image”
“Piano sound”
Overview of general classification tasks

• Example: Classifying a customer to **Good** or **Bad**

Input data → Feature representation → Classifier → Label

Customer

\(\hat{x} = <a_1, a_2> \)

\(a_1 \): # of accounts
\(a_2 \): salary

Feature space

Good
Bad

\(a_1 \)
\(a_2 \)
Different Classifiers

• Different classifications need different classifiers.

Bryan Pardo, EECS 352 Spring 2012
Feature selection is important

- How things cluster depend on what you are measuring.
Which of these go together?
Which of these go together?

Length of legs

Body size
Which of these go together?

Furry

of legs
Nearest Neighbor (NN) Classifier

• When you see a new instance x to classify, find the most similar training example and assign its label to the instance.

• How do you tell what things are similar?
 1. Extract proper features.
 2. Measure distance / similarity in the feature space.
Nearest Neighbor (NN) Classifier

A new instance to classify

The nearest neighbor

\(\mathbf{x} \) is classified into class-1
Nearest Neighbor (NN) Classifier

The nearest neighbor

A new instance to classify

The nearest neighbor

X is classified into class-2
Nearest Neighbor (NN) Classifier

The decision boundary
How do we measure distance?

• Euclidian distance
 – what people intuitively think of as “distance”

\[d(A, B) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2} \]
L^p norms

- L^p norms are all special cases of this function:

\[
 d(\vec{x}, \vec{y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p}
\]

- L^1 norms = Manhattan Distance: \(p=1 \)

- L^2 norms = Euclidean Distance: \(p=2 \)
Cosine Similarity

• Measure of similarity between two vectors
 – Range from -1 (opposite) to 1 (same)
 – Cosine distance = 1 – cosine similarity

• Cosine similarity between vector A and B:

$$sim(A, B) = \frac{A \cdot B}{\|A\|\|B\|}$$

$$A \cdot B = \sum_{i=1}^{n} A_i B_i$$
$$\|A\|\|B\| = \sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}$$
Feature Scaling

- Different scales of features can mislead distance measure.

 E.g., Measuring distance between humans
 - Feature 1: Height (0-7 feet)
 - Feature 2: weight (0-150 kg)

 In this Euclidean space, the second feature dominates the distance, which might lead to mis-clustering.

 Scaling each feature such that it ranges from 0 to 1 can help.
K-Nearest Neighbor (KNN) Classifier

- Consider multiple neighbors
- Assign most popular label among K nearest neighbors
- More robust to noisy data than NN (k=1)
Choosing K

• Making K too small fits the output to the noise in the dataset (overfitting)

• Making K too large can make decision boundaries in classification indistinct (underfitting)

• Choose K empirically using cross-validation
Choosing K

K=1

K=20
Choosing K

K=1

K=20

Overfitting
Choosing K

K=1

K=20

feature 2

feature 1

Overfitting

Underfitting
Choosing K

K=10

feature 1

feature 2
N-fold cross validation

1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
N-fold cross validation

1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
N-fold cross validation

1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
N-fold cross validation

1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
N-fold cross validation

1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
Evaluation: Classification accuracy

• Evaluation on a dataset that has NOT been used in model building.

• Classification accuracy
 – # of correct classifications / total # of examples

• Example: comparing two classifiers
 – Classifier 1: 80% of accuracy
 – Classifier 2: 78% of accuracy
 – Which one would you pick for your system?

• Classification accuracy might hide the details of the performance of your model.
Evaluation: Confusion matrix

- Confusion matrix gives you a better understanding of the behavior of your classifier.

<table>
<thead>
<tr>
<th>True label</th>
<th>Piano</th>
<th>violin</th>
<th>Guitar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano</td>
<td>19</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>violin</td>
<td>0</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Guitar</td>
<td>1</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>
Evaluation: Confusion matrix

- Confusion matrix gives you a better understanding of the behavior of your classifier.

<table>
<thead>
<tr>
<th>True label</th>
<th>Predicted label</th>
<th>Piano</th>
<th>violin</th>
<th>Guitar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>violin</td>
<td>0</td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Guitar</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Classification accuracy: 50/60 = 83%

<table>
<thead>
<tr>
<th>True label</th>
<th>Predicted label</th>
<th>Piano</th>
<th>violin</th>
<th>Guitar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>violin</td>
<td>7</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Guitar</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Classification accuracy: 50/60 = 83%
Now that we know...

• How to build a KNN classifier
• How to evaluate it

We need to learn how to extract feature representations from audio input to build audio classification model.
AUDIO EVENT CLASSIFICATION
Audio event classification

- We need to convert waveform to feature representations to feed in a classifier.

- We have already learned one of feature representations: Spectrogram
Why not use the waveform as a feature?

- It is hard to find meaningful patterns
Why not use the waveform as a feature?

- It is hard to find meaningful patterns
Why not use the waveform as a feature?

• It is hard to find meaningful patterns
 – It needs a very powerful model such as deep neural networks which require millions of training data.

• Waveform is too big.
 – 1 second of audio at 44.1kHZ → 44,100 values
Commonly used audio features

• Zero-crossing rate
 – Time-domain feature
 – Rate of sign changes in a signal
 – Low for harmonic sounds, high for noisy sounds

* Figure: https://en.wikipedia.org/wiki/Zero_crossing
Commonly used audio features

- Zero-crossing rate

Graph showing the zero-crossing rate for different sound sources:
- Guitar
- Snare drum
- White noise
Commonly used audio features

- **Spectral centroid**
 - Frequency domain feature
 - The weighted mean of the frequencies in the signal
 - Known as a predictor of the “brightness” of a sound

* figure: https://librosa.github.io/librosa/generated/librosa.feature.spectral_centroid.html
Commonly used audio features

- Spectral centroid

Kick drum

Snare drum
Automatic drum transcription

• Let’s build a drum transcription machine only using spectral centroid features
Automatic drum transcription

• Onset detection
 – librosa.onset.onset_detect
Automatic drum transcription

• Segmentation
 – Cutting the recording every $<\text{onset−2048 samples}>$

(Onset[t – 1] – 2048, Onset[t] – 2048)
Automatic drum transcription

• Extracting spectral centroid from each segment
Automatic drum transcription
Automatic drum transcription - 2

• More challenging example
Automatic drum transcription-2

- Onset detection might not work that well on this example, but let’s assume we have perfect onset info
Automatic drum transcription-2

- Segmentation and feature extraction

- The previous example
Automatic drum transcription-2

• More challenging example

You can find more feature extraction functions in the Librosa package
Feature summarization

• Using summary statistics over time to represent an audio expert as a single vector

\[\vec{x} = \langle a_1, a_2, ... , a_n \rangle \]

\[\text{Mean}([SC_1, SC_2, SC_3, ..., SC_t]) = a_1 \]

\[\text{Variance}([SC_1, SC_2, SC_3, ..., SC_t]) = a_2 \]

\[\text{Delta-mean}([SC_1, SC_2, SC_3, ..., SC_t]) \]
\[= \text{mean}([SC_2 - SC_1, SC_3 - SC_2, ... , SC_t - SC_{t-1}]) = a_3 \]

\[\text{Delta-var}([SC_1, SC_2, SC_3, ..., SC_t]) \]
\[= \text{var}([SC_2 - SC_1, SC_3 - SC_2, ... , SC_t - SC_{t-1}]) = a_4 \]

*SC: Spectral Centroid
Feature summarization

• Example for multi dimensional features

![Diagram showing summarization process]

- Summarize over time
- Concatenate
- Mean, Variance
Example using a TINY spectrogram

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Spectrogram</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 3 1 5</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>0 .4 0 .4 .2</td>
<td>.2</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0 29 1 20 10</td>
<td>12</td>
<td>124.4</td>
</tr>
<tr>
<td></td>
<td>10 10 10 10 10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 0 0 50 0</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time
Example using a TINY spectrogram

<table>
<thead>
<tr>
<th>Spectrogram</th>
<th>Delta</th>
<th>Delta-mean</th>
<th>Delta-variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 3 1 5</td>
<td>-1 3 -2 4</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>0 .4 0 .4 .2</td>
<td>.4 -.4 .4 -.2</td>
<td>.05</td>
<td>.13</td>
</tr>
<tr>
<td>0 29 1 20 10</td>
<td>29 -28 19 -10</td>
<td>2.5</td>
<td>515.3</td>
</tr>
<tr>
<td>10 10 10 10 10</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 50 0</td>
<td>0 0 50 -50</td>
<td>0</td>
<td>1250</td>
</tr>
</tbody>
</table>

Delta = frame at (t+1) – frame at t
Example using a TINY spectrogram

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
<th>Delta -Mean</th>
<th>Delta -Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>.2</td>
<td>0.03</td>
<td>.05</td>
<td>.13</td>
</tr>
<tr>
<td>12</td>
<td>124.4</td>
<td>2.5</td>
<td>515.3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>400</td>
<td>0</td>
<td>1250</td>
</tr>
</tbody>
</table>

The final feature vector (concatenating them all):
[1, .2, 12, 10, 10, 3.2, 0.03, 124.4, 0, 400, 1, .05, 2.5, 0, 0, 6.5, .13, 515.3, 0, 1250]
Sound Event Detection by Classification

Context-window

Classification on each context window

Dog barking
Car engine
Door knock
Challenges

• Polyphonic environment, background noise

• Noisy labels

• Using a hierarchical relationship between audio labels

• Weakly labeled training dataset

• A small amount of labeled training dataset

• A large amount of unlabeled training dataset
Datasets for sound object labeling

- Urban sound dataset: https://urbansounddataset.weebly.com/
- AudioSet: https://research.google.com/audioset/
- ESC: https://github.com/karoldvl/ESC-50
- IRMAS: https://www.upf.edu/web/mtg/irmas
- Vocal Imitation Set: https://zenodo.org/record/1340763#.XEtAJs9KiRs
EXAMPLE: DOOR KNOCKING / PHONE RINGING CLASSIFICATION
Training data
Feature extraction and summarization

• Zero-crossing rate and Spectral centroid
 – window length = 2048, hop length = 1024
 – Both features are represented as a single number for each time frame. So we get two feature values for each time frame (2-dimensional space)
 – The number of time frames vary with the length of each signal.

• To represent all the signals as the same size of feature vectors, we do summarization.
 – In this tutorial, I will take mean over frames.
Feature extraction and summarization

Now we can map all the signals into 2-dimensional feature space
Plotting them in the feature space
Feature scaling

![Graph showing Feature scaling with Knock and Phone categories. The x-axis represents Zero Crossing Rate, and the y-axis represents Spectral Centroid. The data points are scattered, with Knock data points in blue and Phone data points in red.]
Testing examples
Plotting test examples

Nearest Neighbor classifier would perfectly work in this testing case