Collaborative Filtering

EECS 349 Machine Learning
Bongjun Kim
What is Collaborative Filtering?

• Task: How do I predict what you’ll like?

• Two approaches
 – User-based: You will like *item A* because *users* who are similar to you like *item A*.
 – Item-based: You will like *item A* because you like *items* that are similar to *item A*.
User-Based Collaborative Filtering

• Find users that is similar to you and you might like the item the user likes

A

I like..
- Star wars
- Star Trek
- Mission Impossible

B

I like..
- Star wars
- Star Trek
- Mission Impossible
- X-men

B is a user who has similar preference to A. So A would like “X-men” too !!
Item-Based Collaborative Filtering

• You might like items that are similar to items you already like

"Star Trek" is a movie similar to Star Wars because it has "star" in the name. Then, A would like "Star Trek" too!

Do you think A would also like "Dancing with the Star"?
Feature Selection

• Measuring similarity (of users or items) requires measuring their features.

• Which features should I measure?

• Are there features that are (relatively) insensitive to the particulars of the recommendation tasks?
Feature Selection

• Implicit features
 – The number of clicks
 – Demographic information
 – The number of followers

• Explicit features
 – User Ratings
 – Review
 – Purchase history
USER-BASED COLLABORATIVE FILTERING
How do we find a user who is similar?

- Distance (or similarity) measure
 - N-dimensional space
- Example: movie ratings of 3 users
 - Ratings from 1 (dislike) to 5 (like)

<table>
<thead>
<tr>
<th></th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry Potter</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Star Wars</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

![Graph showing user ratings and similarity](graph.png)
Which similarity measure to use?

- p-norm
 - Manhattan
 - Euclidian
- Pearson Correlation
- Cosine Similarity
- Etc..
Who is the most similar to John?

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cathy</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>John</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- Manhattan Distance:

 (John, Brian) = 0 + 1 + 0 = 1

 (John, Bob) = 4 + 3 + 2 = 9

 (John, Cathy) = 3 + 2 + 1 = 6

Q: Does Manhattan Distance measure similarities properly in this data set?
Who is the most similar to Adam?

Example #2

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Brian</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Adam</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Manhattan Distance:

 $$(Adam, \text{ Bill}) = 1 + 1 + 1 + 1 = 4$$

 $$(Adam, \text{ Brian}) = 2 + 1 + 1 + 2 = 6$$

Q: Does Manhattan Distance measure similarities properly in this data set?

Different users may use different rating scales
Who is the most similar to Adam?

- Manhattan Distance:

 \[(\text{Adam, Bill}) = 1 + 1 + 1 + 1 = 4\]
 \[(\text{Adam, Brian}) = 2 + 1 + 1 + 2 = 6\]

Q: Does Manhattan Distance measure similarities properly in this data set? Different users may use different rating scales
Pearson Correlation

• Measure of correlation between two variables
• Pearson correlation coefficient
 – Range (-1, 1)
 – A perfect positive correlation: 1
 – A perfect negative correlation: -1

\[
sim(u, v) = \frac{\sum_{i \in C} (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in C} (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_{i \in C} (r_{v,i} - \bar{r}_v)^2}},
\]

In Python,

```python
>> import scipy.stats
>> scipy.stats.pearsonr(array1, array2)
```
Cosine Similarity

• Measure of similarity between two vectors
 – Range from -1 (opposite) to 1 (same)

• Cosine similarity between vector a and b:

$$sim(a,b) = \frac{a \cdot b}{|a| \cdot |b|}$$
Who is the most similar to Adam?

Example #2

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Brian</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Adam</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- Pearson Correlation:

 \[(\text{Adam, Bill}) = -1\]

 \[(\text{Adam, Brian}) = 1\]

Q: Does Pearson Correlation measure similarities properly in this data set?
Recommendation and Prediction

• Recommendation
 – Recommends items you might like
 • Presents top k items
 – “I think you would like X-men and Star wars”

• Prediction
 – Predicts how much you will like items
 • Using some rating scale
 – “I think you would give 4 stars for X-men and 3.5 stars for Star wars”
How to predict ratings to unrated items

- User-based K-Nearest Neighbor Collaborative Filtering
 1) Define a similarity measure
 2) Pick k users that had similar preferences to those of current user
 3) Compute a prediction from a weighted average of k nearest neighbors’ ratings (see the next slide)

You need to do experiments to find optimal k value.
How to predict ratings to unrated items

• Prediction for the rating of user a for item p.

$$\text{pred}(a, p) = \bar{r}_a + \frac{\sum_{b \in k} \text{sim}(a, b) \times (\bar{r}_{b, p} - \bar{r}_b)}{\sum_{b \in k} \text{sim}(a, b)}$$

- \bar{r}_a: User a’s average rating
- \bar{r}_b: Rating of user b for item p
- $\text{sim}(a, b)$: Similarity between user a and user b
Let’s practice user-based k-NN CF

• In this practice and our homework, we will use much simpler way to compute a prediction of rating

 1) Define a similarity measure

 2) Pick k users that had similar preferences to those of current user

 3) Pick the mode of the top k nearest neighbors as the predicted rating

- ex) If you pick 3 neighbors and their ratings to the target item are (2, 2, 3), then the prediction will be 2.
Example #1: How would John rate Star wars?

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cathy</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>John</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>?</td>
</tr>
</tbody>
</table>

Manhattan Distance:

(John, Brian) = 0 + 1 + 0 = 1
(John, Bob) = 4 + 3 + 2 = 9
(John, Cathy) = 3 + 2 + 1 = 6

The nearest neighbor: Brian
John’s rating to Star wars: 4
Practice: User-based k-NN CF (k=1)

Example #2: How would John rate Avatar?

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
<th>Avatar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Bob</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cathy</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>John</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>

Manhattan Distance:
(John, Brian) = 1 + 1 + 1 + 2 = 5
(John, Bob) = 2 + 1 + 1 + 2 = 6
(John, Cathy) = 1 + 1 + 1 + 1 = 4

Pearson Correlation Coefficient
(John, Brian) = -0.90
(John, Bob) = 1.0
(John, Cathy) = 0.95

The nearest neighbor: Cathy
John’s rating to Avatar: 1

The nearest neighbor: Bob
John’s rating to Avatar: 2
ITEM-BASED COLLABORATIVE FILTERING
How to predict ratings to unrated items

- **Item-based** K-Nearest Neighbor Collaborative Filtering
 1) Define a similarity measure between items
 2) Pick k items rated by the current user similar to the target item
 3) Compute a prediction from a weighted average of the k similar items’ ratings
Let’s practice **item-based** k-NN CF

- In this practice and our homework, we will use much simpler way to compute a prediction of rating
 1) Define a similarity measure between **items**
 2) Pick k items rated by the current user similar to the target item
 3) Pick the mode of the top k nearest neighbors as the predicted rating

- ex) If you picked 3 items and current user’s ratings to the 3 items are (2, 2, 3), then the prediction will be 2.
Example #1

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cathy</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>John</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>?</td>
</tr>
</tbody>
</table>

Manhattan Distance:

- \((\text{Star wars, Inception}) = 1 + 1 + 1 = 3\)
- \((\text{Star wars, Begin again}) = 1 + 2 + 2 = 5\)
- \((\text{Star wars, Once}) = 2 + 2 + 2 = 6\)

The most similar item to Star wars: Inception

John’s rating to Star wars: 5
The Cold Start Problem

• What if this user has never rated anything before?

• What if nobody has rated this item before?

• Additional information. For example,
 – Ask users to rate some initial items
 – Demographic information for users
 – Content analysis or metadata for items
Missing values

• Missing values in user-rating matrix
 – What if two users have rated different sets of things? How do we compare them?
 – What if two items have been rated by disjoint sets of users? How do we compare them?
Dealing with missing values

Example

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
<th>Avatar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>2</td>
<td>?</td>
<td>3</td>
<td>?</td>
<td>4</td>
</tr>
<tr>
<td>Bob</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cathy</td>
<td>5</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>John</td>
<td>5</td>
<td>?</td>
<td>2</td>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>
Dealing with missing values

Example

<table>
<thead>
<tr>
<th></th>
<th>Inception</th>
<th>Begin again</th>
<th>Once</th>
<th>Star wars</th>
<th>Avatar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Bob</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cathy</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>John</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>
Dealing with missing values

• Discarding the person/item from comparison?
 – It does not solve cold start problem
 – What if the data set is so sparse?

• Putting in a crazy number (-1000) for missing values?

• Putting in a random number?

• Putting in a mean (median) value?
 – Mean value of what set?

• Other advanced imputation technique?
Make a decision

• Which similarity (or distance) measure to use?

• How many neighbors to pick?

• How to weight neighbors chosen?

• User-based or item-based?

• How to deal with missing values?